
Operating Systems

Lecture 2

Boot, Process, Kernel

Prof. Mengwei Xu

• OS is a bridge between hardware and apps/users.

• OS is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

Recap of Last Course

9/19/2024 Mengwei Xu @ BUPT Fall 2023 2

• OS is a bridge between hardware and apps/users.

• OS is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

• OS is the referee, illusionist, and glue.

• Learning OS is important, useful, and cool.

Recap of Last Course

9/19/2024 Mengwei Xu @ BUPT Fall 2023 3

• OS is a bridge between hardware and apps/users.

• OS is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

• OS is the referee, illusionist, and glue.

• Learning OS is important, useful, and cool.

• OS evolution: Serial processing -> Simple Batch System ->
Multi-programmed Batch Systems -> Time Sharing Systems
- Adapting to new hardware and workloads

Recap of Last Course

9/19/2024 Mengwei Xu @ BUPT Fall 2023 4

• OS involves extensive interaction with hardware (especially
CPU)
- Understanding their interface is critical to learning OS.

Recap of Last Course

9/19/2024 Mengwei Xu @ BUPT Fall 2023 5

Arithmetic

Logic Unit

(ALU,逻辑运
算单元)

Controll Unit

(CU,控制单元)

Registers (寄存器)

Cache (缓存)

Memory (内存)

0xf0c

0xf08

0xf04

0xf00

…

…

0x108

0x104

0x100

…

save R2 -> 0x108

add R0 R1 -> R2

load 0x104 -> R1

load 0x100 -> R0

…

…

a

2

1

…

… …

Address Content

Memory

Code

region

Data

region

9/19/2024 Mengwei Xu @ BUPT Fall 2023 6

• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today

9/19/2024 Mengwei Xu @ BUPT Fall 2023 7

• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today

9/19/2024 Mengwei Xu @ BUPT Fall 2023 8

• Basic Input Output System (BIOS)
- A firmware (固件, vs. hw/system/software)
- Stored on ROM on motherboard

1. Power-on self-test (POST) diagnostics

2. Identify attached hardware and initialize their
states
- VGA display, keyboards, etc..

3. Build HW description for advanced configuration
and power interface (ACPI)
- Defines HW interface between BIOS and OS

4. Load a bootloader from disk to memory
- Usually the first disk sector (512 bytes)

5. Transfer the control to the bootloader
- Setting %cs and %ip

BIOS

9/19/2024 Mengwei Xu @ BUPT Fall 2023 9

• Part of OS

1. Switch from real mode (实模式) to protected mode (保护模式)
- See next slide

2. Check if kernel image is okay

3. Loading kernel from disk to memory
- Sector by sector

4. Transfer the control to the “real” OS

Bootloader

9/19/2024 Mengwei Xu @ BUPT Fall 2023 10

• It’s about different status the CPU works at

• Historical baggage: CPU needs backward compatibility

Real Mode vs. Protected Mode

9/19/2024 Mengwei Xu @ BUPT Fall 2023 11

• It’s about different status the CPU works at

• Historical baggage: CPU needs backward compatibility

Real Mode vs. Protected Mode

9/19/2024 Mengwei Xu @ BUPT Fall 2023 12

BIOS vs. Bootloader

BIOS Bootloader

Firmware, comes with HW
Software, comes with (or part of)

OS

The first software that runs since

power on

The first user-defined or user-

changeable software that runs

since power on

Usually stored on ROM and not

changeable

Stored with OS (hard disk, USB,

etc)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 13

• Why BIOS does not directly load the kernel?

You must wonder..

9/19/2024 Mengwei Xu @ BUPT Fall 2023 14

• Why BIOS does not directly load the kernel?
- Flexibility and Compatibility

- Boot Device Detection

- Boot Manager Functionality

- Security and Verification

- Error Handling

- Ease of Updates

- The above are summarized by ChatGPT

You must wonder..

9/19/2024 Mengwei Xu @ BUPT Fall 2023 15

A Summary of Booting Process

9/19/2024 Mengwei Xu @ BUPT Fall 2023 16

• [f000:fff0] 0xffff0: ljmp $0xf000,$0xe05b
- The first instruction run by CPU

- Observed through GDB

- What we learned from it?
❑ The IBM PC starts executing at physical address 0x000ffff0, which is at the very

top of the 64KB area reserved for the ROM BIOS.

❑The PC starts executing with CS = 0xf000 and IP = 0xfff0.

❑The first instruction to be executed is a jmp instruction, which jumps to the
segmented address CS = 0xf000 and IP = 0xe05b.

BIOS ljmp

0x000f0000

0x000fffff

CPU starts here

Case Study: Booting of JOS (1/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 17

Case Study: Booting of JOS (2/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 18

Case Study: Booting of JOS (3/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 19

• Unified Extensible Firmware Interface (可扩展固件接口, UEFI)

• A successor of BIOS
- It’s faster

- It has filesystem support

- It can be stored in various places: flash memory on motherboard, hard
drive, or even network share

- It supports more input such as mouse

- It has secure boot

- It has better UI

- Somehow it’s more like a ”mini OS”

UEFI

9/19/2024 Mengwei Xu @ BUPT Fall 2023 20

• Unified Extensible Firmware Interface (可扩展固件接口, UEFI)

• A successor of BIOS
- It’s faster

- It has filesystem support

- It can be stored in various places: flash memory on motherboard, hard
drive, or even network share

- It supports more input such as mouse

- It has secure boot

- It has better UI

- Somehow it’s more like a ”mini OS”

UEFI

9/19/2024 Mengwei Xu @ BUPT Fall 2023 21

• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today

9/19/2024 Mengwei Xu @ BUPT Fall 2023 22

• Process: the execution of an application program with restricted
rights
- Protection from each other; OS protected from processes

- Owns dedicated Address Space (later)

- Contexts of file descriptors, filesystem, etc..

- One or many threads (later)

• How process differs from program?
- Process is an instance of program, like an object is an instance of a

class in OOP

- A program can have zero, one, or many processes executing it

Process (进程)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 23

• Process Control Block (PCB,进程控制块): a data structure used
by Linux to keep track of a process execution
- Process ID (PID)

- Process state (running, ready, waiting..)

- Process priority

- Program counter

- Memory related information

- Register information

- I/O status information (file descriptors, I/O devices..)

- Accounting information

• In what case these information is used?

Process Control Block

9/19/2024 Mengwei Xu @ BUPT Fall 2023 24

int a = 0;

int b;

void hello() {

static c = a + b;

int d;

int*e = malloc(..);

}

Where are a/b/c/d/e stored in memory?

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 25

int a = 0; // .data

int b; // .bss

void hello() {

static int c; // .bss

int d; // stack

int* e = malloc(..); // heap

}

Where are a/b/c/d/e stored in memory?

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 26

• An executable mainly consists
of bss, data, and code regions.

• Remember: this memory
address is NOT physical!
- Will learn how it’s translated into

physical address later.

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 27

• Use readelf command to
checkout what’s in an
executable

• The concrete output depends on
the compiler
- What optimization level?

- Whether debug mode is enabled?

- ..

Process in Memory

9/19/2024 Mengwei Xu @ BUPT Fall 2023 28

• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today

9/19/2024 Mengwei Xu @ BUPT Fall 2023 29

• The basic model of CPU virtualization: run one process for a
little while, then run another one, and so forth..

• Challenge#1: performance
- How to virtualize without adding excessive overhead to the system

• Challenge#2: control (isolation)
- OS must take control whenever it wants; otherwise a process can run

forever

- OS must control how certain resources can be accessed by processes;
otherwise, evil processes can .. (let’s brainstorm!)

- A straightforward way to address this: let OS take charge of each
instruction of process
❑A simulation (or virtual machine) way

❑Too slow

❑Can we do it in hardware?

How to Virtualize

9/19/2024 Mengwei Xu @ BUPT Fall 2023 30

•举个栗子：相亲

•场景：TA要去相亲很多个对象（时间紧张），但是相亲对象可能
有不法分子（他可能会问你敏感信息例如家庭住址或告知虚假信
息例如收入）。如果同时保证相亲过程的高效率和安全性？
- 面对面直接聊or通过中间人聊？

How to Virtualize

9/19/2024 Mengwei Xu @ BUPT Fall 2023 31

• The basic approach: limited direct execution

• Feature#1: restricted operations (特权指令)
- Sensitive operations must go to OS, so the latter can guarantee its

legality (reject, accept, schedule, etc)

• Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..

- Involuntary switching: timer interrupt (时钟中断)

Limited Direct Execution

9/19/2024 Mengwei Xu @ BUPT Fall 2023 32

•举个栗子：相亲

•场景：TA要去相亲很多个对象（时间紧张），但是相亲对象可能
有不法分子（他可能会问你敏感信息例如家庭住址或告知虚假信
息例如收入）。如果同时保证相亲过程的高效率和安全性？
- 面对面直接聊or通过中间人聊？

•方法：通过一个警察叔叔实现“权限有限的面对面聊”
- Privileged call：当对方告知虚假信息时，警察叔叔会查证信息有效性；
当对方询问隐私信息时，TA只能通过警察叔叔告知（权限验证）。

- Timer interrupt：每隔5分钟，警察叔叔都会介入打算，决定是否允许继
续聊 or切换到下一个相亲对象聊

How to Virtualize

9/19/2024 Mengwei Xu @ BUPT Fall 2023 33

• The basic approach: limited direct execution

• Feature#1: restricted operations (特权指令)
- Sensitive operations must go to OS, so the latter can guarantee its

legality (reject, accept, schedule, etc)

• Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..

- Involuntary switching: timer interrupt (时钟中断)

• But, how to implement such approach? Is software alone
enough?

Limited Direct Execution

9/19/2024 Mengwei Xu @ BUPT Fall 2023 34

• Hardware-assisted isolation and protection
- User mode (用户态) vs. kernel mode (内核态)

- Teachers & TAs are in ?? mode, while students are in ?? mode

• What hardware needs to provide?
- Privileged instructions (特权指令)

- Memory protection

- Timer interrupts

- Safe mode transfer (in next course)

Dual Mode

9/19/2024 Mengwei Xu @ BUPT Fall 2023 35

• Instructions available in kernel mode but not user mode

Privileged Instructions (1/3)

Privileged Instructions Non-privileged Instructions

I/O read/write Performing arithmetic operations

Context switch Call a function

Changing privilege level Reading status of processor

Set system time Read system time

.. ..

Any instructions that could affect other

processes are likely to be privileged.

9/19/2024 Mengwei Xu @ BUPT Fall 2023 36

• What if apps need those privileged instructions?
- Will learn the details later

Privileged Instructions (2/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 37

• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

Privileged Instructions (3/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 38

• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

• Demonstration with assembly code
- Demonstration without assembly code (e.g., in pure C) is challenging

Privileged Instructions (3/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 39

• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

• Demonstration with assembly code
- Demonstration without assembly code (e.g., in pure C) is challenging

• The concept of ``execution permission’’ also extends to app-
level as well, e.g., in Android system that each app requests
permissions for read/write, network, etc..
- How is such permission checking achieved? The same as privileged

instructions?

Privileged Instructions (3/3)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 40

• Segmentation (分段) approach: base and bounds registers
- Every memory access is checked on those registers

- A block copy needs to check each of the data address

- Kernel mode bypasses this check

Memory Protection (1/5)

base

base + bounds

9/19/2024 Mengwei Xu @ BUPT Fall 2023 41

• Segmentation (分段) approach: base and bounds registers
- Every memory access is checked on those registers

- A block copy needs to check each of the data address

- Kernel mode bypasses this check

• The disadvantages:
- No expandable heap and stack

- No memory sharing

- Memory fragmentation

- Etc..

Memory Protection (1/5)

base

base + bounds

9/19/2024 Mengwei Xu @ BUPT Fall 2023 42

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS

- Involves extensive software-hardware cooperation

• How to translate virtual address to physical address is
determined by OS in kernel mode

• The actual translation process and permission check is done by
CPU

Memory Protection (2/5)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 43

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS

- Involves extensive software-hardware cooperation

• How to translate virtual address to physical address is
determined by OS in kernel mode

• The actual translation process and permission check is done by
CPU

Memory Protection (2/5)

Page Table

9/19/2024 Mengwei Xu @ BUPT Fall 2023 44

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (3/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr

9/19/2024 Mengwei Xu @ BUPT Fall 2023 45

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (4/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data

A random access to this region

might lead to an exception

A random access to this region

must lead to an exception

9/19/2024 Mengwei Xu @ BUPT Fall 2023 46

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (5/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Kernel code/data

Another process

9/19/2024 Mengwei Xu @ BUPT Fall 2023 47

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (5/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Kernel code/data

Another process

Why kernel is placed at the high address?

9/19/2024 Mengwei Xu @ BUPT Fall 2023 48

• A way for OS to regain the control to the CPU
- An illusion: the program has the full control of CPU

- Otherwise, it can execute an infinite loop..

- Hardware timer can only be reset in kernel mode

• After timer interrupts, the OS schedules another process (could
be the same one being interrupted) to run

Timer Interrupts

9/19/2024 Mengwei Xu @ BUPT Fall 2023 49

• x86 Architecture uses lower 2-bits in the CS segment register
(referred to as the Current Privilege Level bits).
- Yet most OSes only use level 0 (kernel mode) and level 3 (user mode).

Current Privilege Level (CPL)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 50

• x86 Architecture uses lower 2-bits in the CS segment register
(referred to as the Current Privilege Level bits).
- Yet most OSes only use level 0 (kernel mode) and level 3 (user mode).

Current Privilege Level (CPL)

How to switch between user

and kernel modes?

1. CPL &= 0x0
2. CPL &= 0x3
3. CPL |= 0x0
4. CPL |= 0x3
5. CPL &= 0xfffffffc
6. CPL |= 0xfffffffc

9/19/2024 Mengwei Xu @ BUPT Fall 2023 51

• user/app code vs. user/app process vs. user mode

• OS code vs. system process vs. kernel mode

Concepts

Code Process Mode

9/19/2024 Mengwei Xu @ BUPT Fall 2023 52

• Does user code always run in user process?

• Does user code always run in user mode?

• Does OS code always run in system process?

• Does OS code always run in kernel mode?

• How does code/CPU know if it’s in user or kernel mode?

Some Interesting Questions

9/19/2024 Mengwei Xu @ BUPT Fall 2023 53

• Try to answer the questions in last slide.

• Write some programs that encounter errors due to use of
privileged instructions.

• Learn about ELF file format.

Homework – No Submission Required

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

