Operating Systems
Lecture 2

Boot, Process, Kernel

Prof. Mengwei Xu

Recap of Last Course

* OS Is a bridge between hardware and apps/users.

* OS Is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

Recap of Last Course

* OS Is a bridge between hardware and apps/users.

* OS Is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

* OS Is the referee, illusionist, and glue.
* Learning OS is important, useful, and cool.

Recap of Last Course

* OS Is a bridge between hardware and apps/users.

* OS Is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

* OS Is the referee, illusionist, and glue.
* Learning OS is important, useful, and cool.

* OS evolution: Serial processing -> Simple Batch System ->
Multi-programmed Batch Systems -> Time Sharing Systems
- Adapting to new hardware and workloads

Recap of Last Course

* OS involves extensive interaction with hardware (especially
CPU)

_ o _ - ~Address Content

__-_Understanding their interface_is critical to learnins-<---
| . : _— S
. Arithmetic _) ! OxfOc save R2 -> 0x108
: Logic Unit Controll Unit ! oo
| (AU S || (CU, RIEE) | Code | | oxf08 | addROR1->R2
L __HHIL) J region [: oxfo4 | load 0x104->R1
| f Registers (%7732) i Oxf00 load 0x100 -> RO
: N J
i Cache (&%) : el
LN / i Data ,OX108

region™ . 2XO%. :
{ Memory (/31¢) J | L.0x100_

Memory

Goals for Today

 How computer boots
* Process: concept and memory layout
* Dual mode: kernel space vs. user space

9/19/2024 Mengwei Xu @ BUPT Fall 2023 6

Goals for Today

« How computer boots
* Process: concept and memory layout
* Dual mode: kernel space vs. user space

9/19/2024 Mengwei Xu @ BUPT Fall 2023 7

BIOS

» Basic Input Output System (BIOS)
- Afirmware (4, vs. hw/system/software)
- Stored on ROM on motherboard

1. Power-on self-test (POST) diagnostics

2. ldentify attached hardware and initialize their
states

- VGA display, keyboards, etc..

3. Build HW description for advanced configuratiol | o 30T o
and power interface (ACPI) TR et
- Defines HW interface between BIOS and OS ;éggg:"ingéég‘gu 2 o0 @ 2,670z

4. Load a bootloader from disk to memory R
- Usually the first disk sector (512 bytes) - — b el T

Systen Date [Thu 10/30/2008] Lab Select Field

5. Transfer the control to the bootloader § St ke Tt e e

- Setﬂng %cs and %|p (CTRL'S from reunte kbd)

ud2.61 (0 Copyright 1985 2006, Nmerican Megatrends, Inc

9/19/2024 Mengwei Xu @ BUPT Fall 2023 8

Bootloader

 Part of OS

1. Switch from real mode (SZEE=) to protected mode (£R$PEIR)
- See next slide

2. Check if kernel image is okay

3. Loading kernel from disk to memory
- Sector by sector

4. Transfer the control to the “real” OS

Real Mode vs. Protected Mode

 |t's about different status the CPU works at

 Historical baggage: CPU needs backward compatibility

Q. Compare Real Mode & Protected mode

SN

Real Mode

Protected mode

01

It this mode processor works as 8086/8088.

It this processor works in full capacity

02

It has only IMB memory addressing
capability

It has more than 1MB to few GB
memory addressing capability

03

It handles only one task.

It handles multiple tasks at a time.

04

In this memory address translation not
required.

In this memory address translation
required.

05

It directly communicate with ports &
devices.

It directly communicate with ports &
devices through OS.

06

This mode not supports memory
management.

This mode supports memory
management.

07

It supports less addressing modes &
instructions.

It supports more addressing modes &
instructions.

08

This mode is for backward capability to
support 8086/8088.

This mode processor works in its real
power.

9/19/2024

Mengwei Xu @ BUPT Fall 2023

9/19/2024

Real Mode vs. Protected Mode

 |t's about different status the CPU works at

 Historical baggage: CPU needs backward compatibility

6. Pentium 4

Comparison of 8086, 80386, Pentium-I, II and III

Sr. No | Features 8086 80386 Pentium-I | Pentium-II Pentium-III

1. Year of Release 1978 1985 1993 1997 1999

2. Processor Size 16 Bit 32 Bit 32 Bit 32 Bit 32 Bit

3. Data Bus 16 Bit 32 Bit 64 Bit 64 Bit 64 Bit

4, Address Bus 20 Bit 32 Bit 32 Bit 32 Bit 32 Bit

9; Memory Banks 2 } 8 8 8

6. Memory Size 1MB 4GB 4GB 64 GB 64GB

7. Pipeline Stages 2 3 5 17 15

8. ALU Size 16 Bit 32 Bit 32 Bit 32 Bit 32 Bit

9. Number of 29K 275K 31M 7.5 M 9.5M

Transistors
10. Operating Frequency 6 MHz 33 MHz 100 MHz 450 MHz 450-1400 MHz

Mengwei Xu @ BUPT Fall 2023

BIOS vs. Bootloader

BIOS

Bootloader

Firmware, comes with HW

Software, comes with (or part of)

OS

The first software that runs since
power on

The first user-defined or user-
changeable software that runs
since power on

Usually stored on ROM and not
changeable

Stored with OS (hard disk, USB,
etc)

You must wonder..

 Why BIOS does not directly load the kernel?

9/19/2024 Mengwei Xu @ BUPT Fall 2023 13

You must wonder..

 Why BIOS does not directly load the kernel?
- Flexibility and Compatibility

Boot Device Detection

Boot Manager Functionality

Security and Verification

Error Handling

Ease of Updates

- The above are summarized by ChatGPT

9/19/2024 Mengwei Xu @ BUPT Fall 2023 14

9/19/2024

A Summary of Booting Process

Power
On

Load BIOS/UEFI
from NVRAM

Load kernel

—

*

*

Probe for
hardware

Determine which
kernel to boot

Instantiate kernel
data structures

v

*

¥

Select boot device
=5

(disk, network, ...)

Load boot loader
(e.g., GRUB)

Start init/systemd
asPID 1

v

*

Identify EFI
system partition

Mengwei Xu @ BUPT Fall 2023

Execute
startup scripts

(Running system)

Case Study: Booting of JOS (1/3)

» [fO00:fff0] OxffffO: Ijmp $0xFO00,$0xe05b

- The first instruction run by CPU
- Observed through GDB

- What we learned from it?

4 The IBM PC starts executing at physical address 0x000ffffO, which is at the very
top of the 64KB area reserved for the ROM BIOS.

dThe PC starts executing with CS = 0xfO00 and IP = OxfffO.

The first instruction to be executed is a jmp instruction, which jumps to the
segmented address CS = 0xf000 and IP = 0xe05bh.

CPU starts here

i

Ox000fffff
) ljmp

0x000f0000

Case Study: Booting of JOS (2/3)

.set PROT_MODE_CSEG, @x8 # kernel code segment selector # Switch from real to protected mode, using a bootstrap GDT
.set PROT_MODE_DSEG, ©x10 # kernel data segment selector # and segment translation that makes virtual addresses

.set CRO_PE_ON, ox1 # protected mode enable flag # identigal to their physical addresses, so that the.
effective memory map does not change during the switch.

.globl start lgdt gdtdesc
start: mov 1l %Cro, %eax

.codel6 # Assemble for 16-bit mode orl $CRO_PE_ON, %eax
. A . mov L %eax, %cro
cli # Disable interrupts

cld # String operations increment # Jump to next instruction, but in 32-bit code segment.

. . # Switches processor into 32-bit mode.
Set up the important data segment registers (DS, ES, SS). 1jmp $PROT_MODE_CSEG, $protcseg

Xxorw %ax,%ax # Segment number zero
movw %ax,%ds # —> Data Segment .code32 # Assemble for 32-bit mode
movw %ax, %es # —> Extra Segment protcseg:
movw %ax,%ss # —> Stack Segment # Set up the protected-mode data segment registers
movw $PROT_MODE_DSEG, %ax Our data segment selector
Enable A20: movw %ax, %ds —> DS: Data Segment
For backwards compatibility with the earliest PCs, physical movw %ax, %es —> ES: Extra Segment
address line 20 is tied low, so that addresses higher than movw %ax, %fs -> FS
1MB wrap around to zero by default. This code undoes this. movw %ax, %gs -> G5
seta20.1: movw %ax, %SS —> SS: Stack Segment
inb $0x64,%al # Wait for not busy ; ;
testb $0x2,%al # Set up the stack pointer and call into C.
jnz seta20.1 movl $5t§rt, %esp
call bootmain
movb $0xdl,%al # 0xdl — port 0x64

outh %al, $0x64 # If bootmain returns (it shouldn't), loop.

spin:
seta20.2: Jnp span
inb $0x64,%al # Wait for not busy # Bootstrap GDT
testb $0x2,%al .p2align 2 # force 4 byte alignment
jnz seta20.2 gdt:
SEG_NULL # null seg
movb $0xdf,%al # Oxdf — port 0x60 SEG(STA_X|STA_R, 0x0, Oxffffffff) # code seg
outb %al, $0x60 SEG(STA_W, 0x@, oxffffffff) # data seg

9/19/2024 Mengwei Xu @ BUPT Fall 2023

Case Study: Booting of JOS (3/3)

bootmain(void) // Read 'count' bytes at 'offset' from kernel into physical address 'pa’.
{DO Hatntves // Might copy more than asked

struct Proghdr xph, *eph; void
int i; readseg(pa, count, offset)
{
// read 1st page off disk end pa:
(() ELFHDR, SECTSIZE%8, 0); -Pa;
// is this a valid ELF? end_pa = pa + count;
if (ELFHDR->e_magic '= ELF_MAGIC)

goto bad; // round down to sector boundary

// load each program segment (ignores ph flags) pa &= ~(SECTSIZE - 1);

ph = (struct Proghdr *) ((x) ELFHDR + ELFHDR->e_phoff);
eph = ph + ELFHDR->e_phnum; // translate from bytes to sectors, and kernel starts at sector 1

for (; ph < eph; ph++) { | offset = (offset / SECTSIZE) + 1;
// p_pa is the load address of this segment (as well

// as the physical address) . .
(ph->p_pa, ph->p_memsz, ph—>p_offset); // If this is too slow, we could read lots of sectors at a time.

for (1 = @; i < ph->p_memsz — ph—>p_filesz; i++) { // We'd write more to memory than asked, but it doesn't matter ——

*x((char *) ph->p_pa + ph—>p_filesz + i) = 0; // we load in increasing order.
while (pa < end_pa) {
// Since we haven't enabled paging yet and we're using
// call the entry point from the ELF header // an identity segment mapping (see boot.S), we can
// note: does not return! // use physical addresses directly. This won't be the
((void (x)(void)) (ELFHDR->e_entry))(); // case once JOS enables the MMU.
((x) pa, offset);

(0x8A00, 0x8A00); pa += SECTSIZE;
(0x8A00, 0x8E00); offset++;

while (1)
/* do nothing */;

}
}

9/19/2024 Mengwei Xu @ BUPT Fall 2023

UEFI

 Unified Extensible Firmware Interface (A] " @ E 420, UEFI)

* A successor of BIOS
- It’s faster
- It has filesystem support

- It can be stored in various places: flash memory on motherboard, hard
drive, or even network share

It supports more input such as mouse
It has secure boot

It has better Ul

Somehow it's more like a "mini OS”

UEFI

 Unified Extensible Firmware Interface (A]§~

Nduanced I'CI Boot Security

Systen Ouervieu

MNIBIOS
Build Date:16/03/08
I 47.01.26.00

Proressar

Genwine Intel (R) CIU
Speed 12660
Cotnt .16

@ 0606 @ 2.670Hz

Systen Hemory
Size «4056HB

[:45:54]

Systen Date [Thu 1030720081

» Serial Number Informatiom

u@2.61 (C)Copyright 1985 2006, fmeric

BIJS SETUr UTILII

Chipset Exit

lIse [EMTER]., [I/iB]
or [SHIFT INE1 to
select a field.

Use (+] ar [1 to
configure systen Tiwe.

¢ Select Screen

11 Select Iten

' Change Field

Tab Select Field

F1 General Help
(CIRL'Q frow remote kbd)
F1&8 Save and Exit
(CIRL'S fraom rempte Khd)

an Negatrends. Inc.

Intel® Visual BIOS

| | classicMode |

Intel® Desktop Board DZ77GA-70K
B Ver GAZ7711H.86A.0063.2013.0129.1913
7: Intel{R) Core(TM) i7-2700K CPU @ 3.50GHz

| Boot order

Drag or +/- to sort boot priority. Double-

click a device to boot from it now.

| @™ sata:aosi iNTEL ssDsa2cwosoG3
| e ————
| ‘ S A0S0 ATAPI iHAS122 B

=

‘ 888 EXT:Intel PXE_Server: PART O : Boot [
‘ ‘ S EXT : FUNITSU MHW2160B) G2

[
[‘ S8 EXT : WDC WD1600)D-00GBBO
‘ ‘ #% LAN : IBA GE Slot 00C8 v1403

‘ &9 LAN :IBA GE Slot 3300 v1403

Advanced

YW Tweet us feedback @VisualBIOS

EQ Tuning

= [E 0, UEFD)

\EXTREME 2

Advanced Setup Load Defaults I Exit

mory: 6 GB

1 Time: 3/7/2013 02:26:46PM

‘ Processor | Graphics | Memory | Cooling |©Verciocking Assistant

Set This PC's Performance:

T

(») SATA
\/o\, Devices @ AT,

Select the boot order for all detected bootable devices.

Profiles

Goals for Today

 How computer boots
* Process: concept and memory layout
* Dual mode: kernel space vs. user space

9/19/2024 Mengwei Xu @ BUPT Fall 2023 21

Process (Gf&E)

* Process: the execution of an application program with restricted
rights
- Protection from each other; OS protected from processes
- Owns dedicated Address Space (later)
- Contexts of file descriptors, filesystem, etc..
- One or many threads (later)

* How process differs from program?

- Process is an instance of program, like an object is an instance of a
class in OOP

- A program can have zero, one, or many processes executing it

Process Control Block

* Process Control Block (PCB, #EfE##]3t): a data structure used
by Linux to keep track of a process execution
- Process ID (PID)
Process state (running, ready, waiting..)
Process priority
Program counter
Memory related information
Register information
/O status information (file descriptors, I/O devices..)
Accounting information

* In what case these information Is used?

Process in Memory

High address

int a =0; (Oxfff..)
void hello() { ‘

static ¢c = a + b;

int d; T

int*e = malloc(..):

Heap
}
Uninitialized data (.bss)
Where are a/b/c/d/e stored in memory? Initialized data (.data)

Code (.text)

Low address
(0x0000..)

Process in Memory

int a =0; // .data High address

(O

int b; // .bss Stack
void hello() { ‘

static int ¢: // .bss

int d; // stack T

int* e = malloc(..): // heap Heap
}

Uninitialized data (.bss)

Where are a/b/c/d/e stored in memory? Initialized data (.data)

Code (.text)

Low address
(0x0000..)

Process in Memory

« An executable mainly consists
of bss, data, and code regions.

« Remember: this memory
address is NOT physical!

- Will learn how it's translated into
physical address later.

High address
(Oxffff..)

Low address
(0x0000..)

Stack

'
1

Heap

Uninitialized data (.bss)

Initialized data (.data)

Code (.text)

Process in Memory

[root@localhost test]$ readelf -S main

There are 29 section headers, starting at offset OxcaOl:

e Use readelf command to e s e ot e e e

y . [0] NULL 00000000 000000 000000 00 0 0 0
CheCkO ut Wh at S In an [1] .interp PROGBITS 08048134 000134 000013 00 A O 0 1
[2] .note.ABI-tag NOTE 08048148 000148 000020 00 A O 0 4

bI [3] .gnu.hash GNU_HASH 08048168 000168 000030 04 A 4 0 4
executa e [4] .dynsym DYNSYM 08048198 000198 000040 10 A 5 1 4
[5] .dynstr STRTAB 08048268 000268 000183 00 A 0O 0 1

[6] .gnu.version VERSYM 080483ec 0003ec 00001la 02 A 4 0 2

[7] .gnu.version r VERNEED 08048408 000408 000060 00 A 5 2 4

[8] .rel.dyn REL 08048468 000468 000010 08 A 4 0 4

[9] .rel.plt REL 08048478 000478 000048 08 A 4 11 4

°® The Concrete OUtpUt depends On [10] .init PROGBITS 080484c0 0004c0 000017 00 AX O 0 4
[11] .plt PROGBITS 080484d8 0004d8 0000a0 04 AX 0 0 4

. [12] .text PROGBITS 08048580 000580 000268 00 AX O 0 16

the Com pller [13] .fini PROGBITS 080487e8 0007e8 00001c 00 AX 0 0 4
[14] .rodata PROGBITS 08048804 000804 00001la 00 0 0 4

. . . [15] .eh frame hdr PROGBITS 08048820 000820 000044 00 A O 0 4

- What Optlmlzatlon Ievelr) [16] .eh frame PROGBITS 08048864 000864 00010c 00 0 0 4

' [17] .ctors PROGBITS 08049970 000970 00000c 00 WA O O 4

- t? [18] .dtors PROGBITS 0804997c 00097c 000008 00 WA O O 4

- Whether debug mode is enabled” e osssents e sossne oo o o
[20] .dynamic DYNAMIC 08049988 000988 0000e0 08 WA 5 0 4

- [21] .got PROGBITS 08049a68 000a68 000004 04 WA O O 4

.. [22] .got.plt PROGBITS 08049a6c 000a6c 000030 04 WA O O 4

[23] .data PROGBITS 08049a9c 000a9%c 000004 00 WA O O 4

[24] .bss NOBITS 08049aa0 000aa0d 000098 00 WA O O 8

[25] .comment PROGBITS 00000000 000aa0 000114 00 0 0 1

[26] .shstrtab STRTAB 00000000 000bb4 0000e9 00 0 0 1

[27] .symtab SYMTAB 00000000 001128 000510 10 28 53 4

[28] .strtab STRTAB 00000000 001638 0003f4 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (0OS specific), p (processor specific)

9/19/2024 Mengwei Xu @ BUPT Fall 2023 27

Goals for Today

 How computer boots
* Process: concept and memory layout
 Dual mode: kernel space vs. user space

9/19/2024 Mengwei Xu @ BUPT Fall 2023 28

How to Virtualize

* The basic model of CPU virtualization: run one process for a
little while, then run another one, and so forth..

* Challenge#l: performance
- How to virtualize without adding excessive overhead to the system

* Challenge#2: control (isolation)

- OS must take control whenever it wants; otherwise a process can run
forever

- OS must control how certain resources can be accessed by processes;
otherwise, evil processes can .. (let's brainstorm!)

- A straightforward way to address this: let OS take charge of each
Instruction of process

LA simulation (or virtual machine) way
Too slow
dCan we do it in hardware?

How to Virtualize

* BN MR
* Ui TAREZADRIRZ AR (BRREK) , (AR R T aE
AT (P RE S R U R S0 a0 2 A ikl % 2 B4
BBTIIEN) o Gn R[] B ORIEAH 3% 2 Y 1= R 22 2 1tk
- X T B BoriE i Hr 1A I

9/19/2024 Mengwei Xu @ BUPT Fall 2023 30

Limited Direct Execution

* The basic approach: limited direct execution

« Feature#l: restricted operations (535 2)
- Sensitive operations must go to OS, so the latter can guarantee its
legality (reject, accept, schedule, etc)

» Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..
- Involuntary switching: timer interrupt (Hs 4 5)

How to Virtualize

* BN MR
s TAREZMARRES NG (WRIRGK) , (R R T8
FATES T CHE AT A2 R AR 1 50 P 5525 401 A

BEAIIEN) o a5 R B R AE 38 1R i B SR 2k
- TEX T EL 2 Bori@ 33 H e A\ 37

» Jii I —AVE RSB BURAR FR A v X v
PflVlleged call: 4XJ 75 & R BUE B, TSR & E k(s BA R ;
XS5 W B AAE B, TAR GRS ERAUEUE A (BUBRIIE)

- Timer interrupt: &5 8l , ERBEISMNITH, RERE RIFHE
SEI or PIRE] R — AR S 0

Limited Direct Execution

* The basic approach: limited direct execution

« Feature#l: restricted operations ($f($542)

- Sensitive operations must go to OS, so the latter can guarantee its
legality (reject, accept, schedule, etc)

» Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..
- Involuntary switching: timer interrupt (Hs 4 5)

* But, how to implement such approach? Is software alone
enough?

9/19/2024 Mengwei Xu @ BUPT Fall 2023 33

Dual Mode

« Hardware-assisted isolation and protection
- User mode (P %) vs. kernel mode (NZZS)
- Teachers & TAs are in ?? mode, while students are in ?? mode

 What hardware needs to provide?
- Privileged instructions (45 42)
- Memory protection
- Timer interrupts
- Safe mode transfer (in next course)

Privileged Instructions (1/3)

e Instructions available in kernel mode but not user mode

Privileged Instructions

Non-privileged Instructions

I/O read/write

Performing arithmetic operations

Context switch

Call a function

Changing privilege level

Reading status of processor

Set system time

Read system time

Any instructions that could affect other
brocesses are likely to be privileged.

Privileged Instructions (2/3)

* What if apps need those privileged instructions?
- Will learn the details later

user mode
(mode bit = 1)

kernel mode
(mode bit = 0)

9/19/2024 Mengwei Xu @ BUPT Fall 2023

36

Privileged Instructions (3/3)

* What if app executes a privileged instruction without permission?

- Processor detects it in its hardware logic, and throws an exception
(next course)

- Process halted, OS takes over

9/19/2024 Mengwei Xu @ BUPT Fall 2023 37

Privileged Instructions (3/3)

* What if app executes a privileged instruction without permission?

- Processor detects it in its hardware logic, and throws an exception
(next course)

- Process halted, OS takes over

« Demonstration with assembly code
: ./a.out g}ir]gl

cat t.c

Illegal instruction
#include <stdio.h>

int main() {
int cpsr;

// Attempt to execute a privileged instruction (MRS - Move to Register from Status)
// This instruction is only allowed in privileged modes (kernel mode).
__asm volatile__ ("MRS %0, s3_3_cl1l3_c2_1" : "=r" (cpsr));

// This code will execute after the privileged instruction above
// without causing a compilation error.
printf("Hello, World!\n");

return O;

Privileged Instructions (3/3)

* What if app executes a privileged instruction without permission?

- Processor detects it in its hardware logic, and throws an exception
(next course)

- Process halted, OS takes over

« Demonstration with assembly code
- Demonstration without assembly code (e.g., in pure C) is challenging

* The concept of "execution permission’ also extends to app-
level as well, e.g., In Android system that each app requests
permissions for read/write, network, etc..

- How iIs such permission checking achieved? The same as privileged
Instructions?

Memory Protection (1/5)

- Segmentation (4-B¥) approach: base and bounds registers

- Every memory access is checked on those registers
- A block copy needs to check each of the data address

- Kernel mode bypasses this check

Base and Bounds

Virtual Address

Base Bounds

o @ =

feauft!
I (f S

Physical Address -

base + bounds ----*

Pl
-
-
-
-
-
-
-
-

_.-"base ----*

Memory Protection (1/5)

- Segmentation (4-B¥) approach: base and bounds registers
- Every memory access is checked on those registers
- A block copy needs to check each of the data address
- Kernel mode bypasses this check

base + bounds ----*
* The disadvantages:

- No expandable heap and stack

- No memory sharing

- Memory fragmentation base ----+
- Eftc..

Memory Protection (2/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS
- Involves extensive software-hardware cooperation

* How to translate virtual address to physical address is
determined by OS in kernel mode

* The actual translation process and permission check is done by
CPU

9/19/2024

Memory Protection (2/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS
- Involves extensive software-hardware cooperation

* How to translate virtual address to physical address is
determined by OS in kernel mode‘

Page Table

¥

* The actual translation process and permission check is done by
CPU

Mengwei Xu @ BUPT Fall 2023 43

Memory Protection (3/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

High address

(Oxffff..) Phy. addr
Kernel code/data .)
\\ /I

Stack N

I\
/1
FERERY
r 4
T /
y

Heap

Uninitialized data (.bss) [---»

Initialized data (.data)

Low address
(0x0000..)

Code (.text)

Memory Protection (4/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

High address

(0xffff..) A random access to this region
Kernel code/data must lead to an exception

Stack)

|

T A random access to this region
ieap might lead to an exception

Uninitialized data (.bss)

Initialized data (.data)

Low address
(0x0000.) Code (.text) B

Memory Protection (5/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

High address Another process
(Oxffff..) Phy. addr
Kernel code/data .)) Kernel code/data
\\ Il ,I
1
Stack Y, / Stack

I\ S
I\ ‘/\
I\ AN
/ | ¥ \
/ \
T | \ T
y N

Heap .~ Heap
Uninitialized data (.bss) | ---» ™ Uninitialized data (.bss)
Initialized data (.data) Initialized data (.data)
Low address Code (.text) Code (.text)

(0x0000..)

Memory Protection (5/5)

* Paging (43 11): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

High address Another process
(Oxffff..) Phy. addr
Kernel code/data .)) Kernel code/data
\\ III /II
Stack Y, / Stack
/‘\ K /I
| A Y |

Why kernel is placed at the high address?

l h -\ 7 X)

Initialized data (.data) Initialized data (.data)

Low address
(0x0000..)

Code (.text) Code (.text)

Timer Interrupts

« Away for OS to regain the control to the CPU
- An illusion: the program has the full control of CPU
- Otherwise, it can execute an infinite loop..
- Hardware timer can only be reset in kernel mode

 After timer interrupts, the OS schedules another process (could
be the same one being interrupted) to run

Current Privilege Level (CPL)

» X86 Architecture uses lower 2-bits in the CS segment register
(referred to as the Current Privilege Level bits).

- Yet most OSes only use level O (kernel mode) and level 3 (user mode).

9/19/2024 Mengwei Xu @ BUPT Fall 2023 49

Current Privilege Level (CPL)

» X86 Architecture uses lower 2-bits in the CS segment register
(referred to as the Current Privilege Level bits).

- Yet most OSes only use level O (kernel mode) and level 3 (user mode).

Protection Rings

How to switch between user
and kernel modes!?

_— 1. CPL &= 0x0
f
perating 2. CPL &= Ox3
Kernel 3. GCPL |: 0x0
Operating System 4. CPL |: 0x3
Services
5. CPL &= Oxfffffffc
evel 2 6. CPL |= Oxfffffffc

Applications

9/19/2024 Mengwei Xu @ BUPT Fall 2023 50

Concepts

* user/app code vs. user/app process vs. user mode
* OS code vs. system process vs. kernel mode

Protection Rings

Operating
System
Kernel

Operating System “ @

Services

Applications

Code Process Mode

9/19/2024 Mengwei Xu @ BUPT Fall 2023 51

Some Interesting Questions

Does user code always run in user process?

Does user code always run in user mode?

Does OS code always run in system process?

Does OS code always run in kernel mode?

How does code/CPU know if it's in user or kernel mode?

Homework — No Submission Required

 Try to answer the guestions in last slide.

* Write some programs that encounter errors due to use of
privileged instructions.

 Learn about ELF file format.

9/19/2024 Mengwei Xu @ BUPT Fall 2023 53

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

