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• OS is a bridge between hardware and apps/users.

• OS is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).
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• OS is a bridge between hardware and apps/users.

• OS is a special software layer that provides and manages the
access from apps/users to hardware resources (CPU, memory,
disk, etc).

• OS is the referee, illusionist, and glue.

• Learning OS is important, useful, and cool.

• OS evolution: Serial processing -> Simple Batch System ->
Multi-programmed Batch Systems -> Time Sharing Systems
- Adapting to new hardware and workloads

Recap of Last Course
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• OS involves extensive interaction with hardware (especially
CPU)
- Understanding their interface is critical to learning OS.

Recap of Last Course
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• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today
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• Basic Input Output System (BIOS)
- A firmware (固件, vs. hw/system/software)
- Stored on ROM on motherboard

1. Power-on self-test (POST) diagnostics

2. Identify attached hardware and initialize their
states
- VGA display, keyboards, etc..

3. Build HW description for advanced configuration 
and power interface (ACPI)
- Defines HW interface between BIOS and OS

4. Load a bootloader from disk to memory
- Usually the first disk sector (512 bytes)

5. Transfer the control to the bootloader
- Setting %cs and %ip

BIOS
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• Part of OS

1. Switch from real mode (实模式) to protected mode (保护模式)
- See next slide

2. Check if kernel image is okay

3. Loading kernel from disk to memory
- Sector by sector

4. Transfer the control to the “real” OS

Bootloader
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• It’s about different status the CPU works at

• Historical baggage: CPU needs backward compatibility

Real Mode vs. Protected Mode
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• Historical baggage: CPU needs backward compatibility

Real Mode vs. Protected Mode
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BIOS vs. Bootloader

BIOS Bootloader

Firmware, comes with HW
Software, comes with (or part of)

OS

The first software that runs since

power on

The first user-defined or user-

changeable software that runs

since power on

Usually stored on ROM and not

changeable

Stored with OS (hard disk, USB,

etc)
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• Why BIOS does not directly load the kernel?

You must wonder..
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• Why BIOS does not directly load the kernel?
- Flexibility and Compatibility

- Boot Device Detection

- Boot Manager Functionality

- Security and Verification

- Error Handling

- Ease of Updates

- The above are summarized by ChatGPT

You must wonder..
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A Summary of Booting Process
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• [f000:fff0] 0xffff0: ljmp $0xf000,$0xe05b
- The first instruction run by CPU

- Observed through GDB

- What we learned from it?
❑ The IBM PC starts executing at physical address 0x000ffff0, which is at the very 

top of the 64KB area reserved for the ROM BIOS.

❑The PC starts executing with CS = 0xf000 and IP = 0xfff0.

❑The first instruction to be executed is a jmp instruction, which jumps to the 
segmented address CS = 0xf000 and IP = 0xe05b.

BIOS ljmp

0x000f0000

0x000fffff

CPU starts here

Case Study: Booting of JOS (1/3)
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Case Study: Booting of JOS (2/3)
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Case Study: Booting of JOS (3/3)
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• Unified Extensible Firmware Interface (可扩展固件接口, UEFI)

• A successor of BIOS
- It’s faster

- It has filesystem support

- It can be stored in various places: flash memory on motherboard, hard
drive, or even network share

- It supports more input such as mouse

- It has secure boot

- It has better UI

- Somehow it’s more like a ”mini OS”

UEFI
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• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today
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• Process: the execution of an application program with restricted
rights
- Protection from each other; OS protected from processes

- Owns dedicated Address Space (later)

- Contexts of file descriptors, filesystem, etc..

- One or many threads (later)

• How process differs from program?
- Process is an instance of program, like an object is an instance of a

class in OOP

- A program can have zero, one, or many processes executing it

Process (进程)
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• Process Control Block (PCB,进程控制块): a data structure used
by Linux to keep track of a process execution
- Process ID (PID)

- Process state (running, ready, waiting..)

- Process priority

- Program counter

- Memory related information

- Register information

- I/O status information (file descriptors, I/O devices..)

- Accounting information

• In what case these information is used?

Process Control Block
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int a = 0;

int b;

void hello() {

static c = a + b;

int d;

int*e = malloc(..);

}

Where are a/b/c/d/e stored in memory?

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)
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int a = 0; // .data

int b; // .bss

void hello() {

static int c; // .bss

int d; // stack

int* e = malloc(..); // heap

}

Where are a/b/c/d/e stored in memory?

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)
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• An executable mainly consists
of bss, data, and code regions.

• Remember: this memory
address is NOT physical!
- Will learn how it’s translated into

physical address later.

Process in Memory

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)
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• Use readelf command to
checkout what’s in an
executable

• The concrete output depends on
the compiler
- What optimization level?

- Whether debug mode is enabled?

- ..

Process in Memory
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• How computer boots

• Process: concept and memory layout

• Dual mode: kernel space vs. user space

Goals for Today
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• The basic model of CPU virtualization: run one process for a
little while, then run another one, and so forth..

• Challenge#1: performance
- How to virtualize without adding excessive overhead to the system

• Challenge#2: control (isolation)
- OS must take control whenever it wants; otherwise a process can run

forever

- OS must control how certain resources can be accessed by processes;
otherwise, evil processes can .. (let’s brainstorm!)

- A straightforward way to address this: let OS take charge of each
instruction of process
❑A simulation (or virtual machine) way

❑Too slow

❑Can we do it in hardware?

How to Virtualize
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•举个栗子：相亲

•场景：TA要去相亲很多个对象（时间紧张），但是相亲对象可能
有不法分子（他可能会问你敏感信息例如家庭住址或告知虚假信
息例如收入）。如果同时保证相亲过程的高效率和安全性？
- 面对面直接聊or通过中间人聊？

How to Virtualize
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• The basic approach: limited direct execution

• Feature#1: restricted operations (特权指令)
- Sensitive operations must go to OS, so the latter can guarantee its

legality (reject, accept, schedule, etc)

• Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..

- Involuntary switching: timer interrupt (时钟中断)

Limited Direct Execution
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•举个栗子：相亲

•场景：TA要去相亲很多个对象（时间紧张），但是相亲对象可能
有不法分子（他可能会问你敏感信息例如家庭住址或告知虚假信
息例如收入）。如果同时保证相亲过程的高效率和安全性？
- 面对面直接聊or通过中间人聊？

•方法：通过一个警察叔叔实现“权限有限的面对面聊”
- Privileged call：当对方告知虚假信息时，警察叔叔会查证信息有效性；
当对方询问隐私信息时，TA只能通过警察叔叔告知（权限验证）。

- Timer interrupt：每隔5分钟，警察叔叔都会介入打算，决定是否允许继
续聊 or切换到下一个相亲对象聊

How to Virtualize
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• The basic approach: limited direct execution

• Feature#1: restricted operations (特权指令)
- Sensitive operations must go to OS, so the latter can guarantee its

legality (reject, accept, schedule, etc)

• Feature#2: inter-process switching
- Voluntary switching: system calls, wait(), etc..

- Involuntary switching: timer interrupt (时钟中断)

• But, how to implement such approach? Is software alone
enough?

Limited Direct Execution
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• Hardware-assisted isolation and protection
- User mode (用户态) vs. kernel mode (内核态)

- Teachers & TAs are in ?? mode, while students are in ?? mode

• What hardware needs to provide?
- Privileged instructions (特权指令)

- Memory protection

- Timer interrupts

- Safe mode transfer (in next course)

Dual Mode
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• Instructions available in kernel mode but not user mode

Privileged Instructions (1/3)

Privileged Instructions Non-privileged Instructions

I/O read/write Performing arithmetic operations

Context switch Call a function

Changing privilege level Reading status of processor

Set system time Read system time

.. ..

Any instructions that could affect other

processes are likely to be privileged.
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• What if apps need those privileged instructions?
- Will learn the details later

Privileged Instructions (2/3)
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• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

Privileged Instructions (3/3)
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• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

• Demonstration with assembly code
- Demonstration without assembly code (e.g., in pure C) is challenging

Privileged Instructions (3/3)



9/19/2024 Mengwei Xu @ BUPT Fall 2023 39

• What if app executes a privileged instruction without permission?
- Processor detects it in its hardware logic, and throws an exception

(next course)

- Process halted, OS takes over

• Demonstration with assembly code
- Demonstration without assembly code (e.g., in pure C) is challenging

• The concept of ``execution permission’’ also extends to app-
level as well, e.g., in Android system that each app requests
permissions for read/write, network, etc..
- How is such permission checking achieved? The same as privileged

instructions?

Privileged Instructions (3/3)
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• Segmentation (分段) approach: base and bounds registers
- Every memory access is checked on those registers

- A block copy needs to check each of the data address

- Kernel mode bypasses this check

Memory Protection (1/5)

base

base + bounds
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• Segmentation (分段) approach: base and bounds registers
- Every memory access is checked on those registers

- A block copy needs to check each of the data address

- Kernel mode bypasses this check

• The disadvantages:
- No expandable heap and stack

- No memory sharing

- Memory fragmentation

- Etc..

Memory Protection (1/5)

base

base + bounds
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• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS

- Involves extensive software-hardware cooperation

• How to translate virtual address to physical address is
determined by OS in kernel mode

• The actual translation process and permission check is done by
CPU

Memory Protection (2/5)



9/19/2024 Mengwei Xu @ BUPT Fall 2023 43

• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory
- Probably the most important and beautiful concept in OS

- Involves extensive software-hardware cooperation

• How to translate virtual address to physical address is
determined by OS in kernel mode

• The actual translation process and permission check is done by
CPU

Memory Protection (2/5)

Page Table
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• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (3/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr
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• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (4/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data

A random access to this region

might lead to an exception

A random access to this region

must lead to an exception
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• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (5/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Kernel code/data

Another process
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• Paging (分页): every memory address a process sees is
“discontinuously” mapped to a physical address in memory

Memory Protection (5/5)

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)

Kernel code/data
Phy. addr

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Kernel code/data

Another process

Why kernel is placed at the high address?
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• A way for OS to regain the control to the CPU
- An illusion: the program has the full control of CPU

- Otherwise, it can execute an infinite loop..

- Hardware timer can only be reset in kernel mode

• After timer interrupts, the OS schedules another process (could
be the same one being interrupted) to run

Timer Interrupts
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• x86 Architecture uses lower 2-bits in the CS segment register 
(referred to as the Current Privilege Level bits).
- Yet most OSes only use level 0 (kernel mode) and level 3 (user mode).

Current Privilege Level (CPL)
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• x86 Architecture uses lower 2-bits in the CS segment register 
(referred to as the Current Privilege Level bits).
- Yet most OSes only use level 0 (kernel mode) and level 3 (user mode).

Current Privilege Level (CPL)

How to switch between user

and kernel modes?

1. CPL &= 0x0
2. CPL &= 0x3
3. CPL |= 0x0
4. CPL |= 0x3
5. CPL &= 0xfffffffc
6. CPL |= 0xfffffffc
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• user/app code vs. user/app process vs. user mode

• OS code vs. system process vs. kernel mode

Concepts

Code Process Mode
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• Does user code always run in user process?

• Does user code always run in user mode?

• Does OS code always run in system process?

• Does OS code always run in kernel mode?

• How does code/CPU know if it’s in user or kernel mode?

Some Interesting Questions
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• Try to answer the questions in last slide.

• Write some programs that encounter errors due to use of
privileged instructions.

• Learn about ELF file format.

Homework – No Submission Required
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